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1. Introduction

Composite element method (CEM) was proposed by Zeng and two companion papers were published [1,2]. The
solution of CEM is obtained by combining the conventional finite element method (FEM) [3] and the closed-form
solutions from the classical theory [4]. The accuracy of the CEM can be improved using two approaches, namely,
h- and c-version. The h-version means the refinement of the finite element mesh, which is the same as the FEM.
The c-version is the increase of degrees-of-freedom (dofs) related to the classical theory. The c-refinement shows the
super-convergence in the results. Numerical examples showed that the CEM is more accurate than the FEM with
the same number of total dofs. This shows that the CEM is computationally efficient and highly accurate.

In this discussion, two ways are presented to further improve the CEM: (a) The analytical shape functions from
the classical theory should observe certain special boundary conditions, and this will lead to different kinds of
shape functions in the displacement field, UCT. However, in Refs. [1,2], the shape functions are the same for both a
bar element and a beam element. In this discussion, the shape functions in UCT are different according to the
different boundary conditions of the beam; and (b) In Refs. [1,2], the entries of the coupling term of the q-
coordinate and the c-coordinate in the stiffness matrix should not always be null since the interpolation
polynomials of the FEM and the shapes functions of the UCT do not automatically satisfy the orthogonal
condition. The CEM is improved with the above two modifications, and the solutions are found better than the
original ones. When the structure is discretized into one-member-one element configuration, it is found that the
number of natural frequency that converges to the analytical solutions is the same as the number of c-dof.

2. The composite element method

The displacement field of the CEM is described as the combination of the conventional polynomials of the
FEM and the shape functions of the classical theory as shown below:

UCEMðxÞ ¼ UFEMðxÞ þUCTðxÞ, (1)
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where UFEM(x) and UCT(x) are the two parts of the CEM displacement field. The first part is obtained from
the FEM:

UFEMðxÞ ¼ NðxÞq, (2)

where N(x) is the shape function of FEM and q the nodal coordinate.
The second part is shown as

UCTðxÞ ¼ jðxÞc, (3)

where j(x) is the analytical function series from the classical theory and c the field coordinate.
It is obvious that the CEM can be refined using h-refinement by increasing the number of the element in the

discretization. In addition, it can also be refined by c-refinement technique, i.e., increase the number of the
analytical shape functions in Eq. (3). This kind of refinement has the advantage that there is no need to
recalculate the whole stiffness and mass matrices except for those related to the new dofs.

The analytical shapes function used in this discussion is determined according to the different boundary
conditions of the beam which is different from Refs. [1,2]. The shapes functions for different boundary
conditions are given in Appendices A and B. Once the displacement field of the CEM is determined, the
remaining step for obtaining the stiffness and mass matrices is similar to those with the conventional FEM,
and it is not repeated here.

3. Numerical example

3.1. A free– clamped beam

The numerical example of a free–clamped beam in Ref. [2] as shown in Fig. 1 is restudied. The length of the
beam is L, the mass density is r and the Young’s modulus is E. The beam is modeled with one element only
and 1c-dof, 4c-dof, 6c-dof and 10c-dof of the shape function of a beam are chosen. Let

li ¼
rAL4

EI
o2

i , (4)

where oi is the ith natural frequency. Tables 1–3 give the comparison of results from Ref. [2] and those from
the modified CEM. The suggested improvements only affect the stiffness matrix of the composite element
while the mass matrix is computed according to the original CEM. Table 1 shows the effects of the inclusion of
the coupling terms in the stiffness matrix of the composite element on the natural frequencies. All the results
are based on the shape functions with clamp–clamped boundary conditions. The effect on the natural
frequencies is found small and the results are found close to those from the CEM. The coupling terms of the
stiffness matrix of the composite element with 5c-dof shown in Appendix B are noted small and the omission
of them would not cause too large error in the final results. Table 2 shows the natural frequencies using shape
functions with the clamped–free boundary conditions and without the coupling terms in the stiffness matrix.
The results err more from the analytical solutions than those from the CEM indicating the effect of the
coupling terms of the stiffness matrix has large effect on the natural frequencies when the shape functions of
v1�1

x

L

EI m

Fig. 1. A free–clamped beam.
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Table 1

Effect of the coupling coordinates on the natural frequencies (Hz) (free–clamped beam)

Order Exact CEM (1� 1c)* CEM (1� 4c)* CEM (1� 6c)* CEM (1� 10c)*

l1 1.875104 1.875429/1.875429 1.875109/1.875109 1.875105/1.875105 1.875104/1.875104

l2 4.694091 4.694419/4.694419 4.694165/ 4.694165 4.694100/4.694100

l3 7.854757 7.847543/7.847543 7.855485/7.855485 7.854857/7.854857

l4 10.99554 11.00451/11.00451 10.99836/10.99836 10.99599/10.99599

l5 14.13717 14.14405/14.14405 14.13846/14.13854

l6 17.27876 17.29133/17.29133 17.28154/17.28157

l7 20.42035 20.42553/20.42555

l8 23.56195 23.57026/23.57028

l9 26.70354 26.71553/26.71556

l10 29.84513 29.86089/29.86092

Note: The symbol CEM (1� 1c) means using one composite element with 1-c dof; CEM (1� 4c) means using one composite element with

4-c dof; �/� denotes the solution of modified CEM (with coupling term only) and CEM, respectively.

Table 2

Effect of the boundary conditions on the natural frequency (Hz) (free–clamped beam)

Order Exact CEM (1� 1c)* CEM (1� 4c)* CEM (1� 6c)* CEM (1� 10c)*

l1 1.875104 1.578648/1.875429 1.578644/1.875109 1.578642/1.875105 1.578642/1.875104

l2 4.694091 4.326955/4.694419 4.326847/ 4.694165 4.326823/4.694100

l3 7.854757 7.630953/7.847543 7.630397/7.855485 7.630192/7.854857

l4 10.99554 10.92315/11.00451 10.91921/10.99836 10.91816/10.99599

l5 14.13717 14.09228/14.14405 14.08909/14.13854

l6 17.27876 17.26013/17.29133 17.25150/17.28157

l7 20.42035 20.40862/20.42555

l8 23.56195 23.56287/23.57028

l9 26.70354 26.716339/26.71556

l10 29.84513 29.87301/29.86092

Note: �/� denotes the solution of modified CEM (with shape functions only) and CEM, respectively.

Table 3

Comparison on the natural frequencies (Hz) (free–clamped beam)

Order Exact CEM (1� 1c)* CEM (1� 4c)* CEM (1� 6c)* CEM (1� 10c)*

l1 1.875104 1.875104/1.875429 1.875104/1.875109 1.875104/1.875105 1.875104/1.875104

l2 4.694091 4.694091/4.694419 4.694091/4.694165 4.694091/4.694100

l3 7.854757 7.854757/7.847543 7.854757/7.855485 7.854757/7.854857

l4 10.99554 10.99554/11.00451 10.99554/10.99836 10.99554/10.99599

l5 14.13717 14.13717/14.14405 14.13717/14.13854

l6 17.27876 17.27876/17.29133 17.27876/17.28157

l7 20.42035 20.42037/20.42555

l8 23.56195 23.56197/23.57028

l9 26.70354 26.70357/26.71556

l10 29.84513 29.84515/29.86092

Note: �/� denotes the solution of modified CEM (with shape functions and coupling terms) and CEM, respectively.
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clamped–free boundary condition are used. This is also confirmed by an inspection of the matrix shown in
Appendix B where the off-diagonal (coupling) terms are not small. Table 3 shows the results using shape
functions with the clamped–free boundary conditions and with the coupling terms in the stiffness matrix. It is
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Fig. 2. A simply supported beam with varied depth.

Table 4

Comparison of natural frequencies (Hz) for Example 2

FEM Original

CEM

Modified CEM (with coupling

term only)

Modified CEM (with shape

functions only)

Modified CEM (with shape

functions and coupling terms)

8.257 8.378 8.258 8.402 8.258

33.568 31.773 33.570 34.626 33.570

75.338 74.602 75.348 81.133 75.345

133.742 116.918 133.770 144.540 133.755
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noted that the results are more close to the analytical solutions than those from the CEM when the above
mentioned modifications are included.
3.2. Natural frequencies of a tapered beam

The deficiency of the original CEM is further illustrated with a non-uniform beam. Fig. 2 shows a tapered
beam with linearly varied depth. The parameters of the beam are: Young’s modulus E ¼ 200Gpa, mass
density r ¼ 7850 kg/m3, length L ¼ 2m, width w ¼ 0.02m, the beam depth is expressed as

hðxÞ ¼ 1� 0:5
x

L

� �
. (5)

Again, the beam is modeled with a single beam element and 5c-dof is chosen. Table 4 shows the first four
natural frequencies from the original CEM and those from the modified CEM. The results of CEM with both
types of modifications are found much closer to those from finite element analysis than those from the original
CEM.
4. Conclusions

The simulation studies above show that the original CEM is restricted to the case of clamped–clamped beam
elements and is not applicable to members with non-uniform cross-sections unless the improvements suggested
in the present discussion are provided.
Appendix A

Shape functions for different beam boundary conditions are shown in Table A1.
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Table A1

Shape functions for different beam boundary conditions

Boundary condition Mode shape bn

Free–free cosh anxþ cos anx� bnðsinh anxþ sin anxÞ 0.9825, 1.0008, 0.9999, 1.0, 0.9999 for n ¼ 1,y, 5. bn ¼ 1.0 for n45

Clamped–free cosh anx� cos anx� bnðsinh anx� sin anxÞ 0.7341, 1.0185, 0.9992, 1.0, 1.0 for n ¼ 1,y, 5. bn ¼ 1.0 for n45

Clamped–clamped cosh anxþ cos anx� bnðsinh anxþ sin anxÞ 0.9825, 1.0008, 0.9999, 1.0, 0.9999 for n ¼ 1,y, 5. bn ¼ 1.0 for n45

Pinned–pinned sin(npx/L) N/A
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Appendix B

Stiffness matrix of a 5c-dof composite beam element with different boundary conditions are shown below.
Clamped– clamped beam element:

Ke ¼
EI

L3

12 6 �12 6 0 �1� 10�4 �2� 10�4 �1� 10�4 �7� 10�4

6 4 �6 2 0 �1� 10�4 �1� 10�4 �1� 10�4 �4� 10�4

�12 �6 12 �6 0 1� 10�4 2� 10�4 1� 10�4 7� 10�4

12 2 �6 4 0 0 �1� 10�4 0 �3� 10�4

0 0 0 0 1:035936l41 0 0 0 0

�1� 10�4 �1� 10�4 1� 10�4 0 0 0:998447l42 0 0 0

�2� 10�4 �1� 10�4 2� 10�4 �1� 10�4 0 0 1:000067l43 0 0

�1� 10�4 �1� 10�4 1� 10�4 0 0 0 0 0:9999971l44 0

�7� 10�4 �4� 10�4 7� 10�4 �3� 10�4 0 0 0 0 1:0l45

2
666666666666666664

3
777777777777777775

.

Clamped– free beam element:

Ke ¼
EI

L3

12 6 �12 6 �7:482 �33:380 71:293 �53:977 72:823

6 4 �6 2 �6:494 �7:129 19:701 �15:993 22:274

�12 �6 12 �6 7:482 33:380 �71:293 53:977 �72:823

12 2 �6 4 �0:988 �26:296 51:592 �37:985 50:549

�7:482 �6:494 7:482 �0:988 1:0000l41 0 0 0 0

�33:380 �7:129 33:380 �26:296 0 1:0004l42 0 0 0

71:293 19:701 �71:293 51:592 0 0 1:0041l43 0 0

�53:977 �15:993 53:977 �37:985 0 0 0 0:9545l44 0

72:823 22:274 �72:823 50:549 0 0 0 0 0:9646l45

2
666666666666666664

3
777777777777777775

.
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